Question Number	Answer	Acceptable answers	Mark
1(a)(i)	12 + 16 +16 (= 44)	44 with no working	(1)

Question Number	Answer	Acceptable answers	Mark
1(a)(ii)	40+12+(3x16)/(CaCO ₃)100 (1) gives 40+16 /(CaO) 56 (1)		(3)
	25 (tonnes) gives 56x <u>25</u> (tonnes) (1)	allow ecf 14 (tonnes)	
	100	correct answer no working (3)	

Question Number	Answer	Acceptable answers	Mark
1(b(i)	theoretical yield is calculated yield/ value calculated from balanced equation/maximum yield possible/maximum amount of product when reactants have fully reacted.		(1)

Question Number	Answer	Acceptable answers	Mark
1(b)(ii)	 An explanation linking two of the following reaction may be incomplete product/reactant lost other (side-)reactions may occur 	impure reactants unwanted reactions	(2)

Question Number	Answer	Acceptable answers	Mark
1(c)	A suggestion including two of the following • save money/improve profit/disposal of waste costs money (1)	any specific examples	(2)
	 waste product may be harmful to the environment/cause pollution/damage the environment (1) 	ignore references to landfill	

Question Number	Answer	Acceptable answers	Mark
2(a)	to allow air/oxygen in	to ensure magnesium reacts/burns / combusts	(1)

Question Number	Answer	Acceptable answers	Mark
2(b)(i)	all points correctly plotted to half a small square (2) line of best fit (1)	Allow one mark for four or five correctly plotted points ecf their points	(3)

Question Number	Answer	Acceptable answers	Mark
2(b)(ii)	Any one from not all magnesium {burned / reacted} / some left / incomplete reaction not enough air/oxygen some magnesium oxide / smoke lost	lid not lifted / not enough times lid left off too long (so loses MgO)	(1)

Question Number	Answer	Acceptable answers	Mark
2(c)	$2Mg + O_2 \rightarrow 2MgO$ left hand formulae (1) right hand formula (1) balancing correct formulae (1)	correct multiples	(3)

Question Number	Answer	Acceptable answers	Mark
2(d)	0.414 / 207 or 0.064 / 16 (1) 0.002 : 0.004 or 1 : 2 (1) empirical formula PbO ₂ (1)	if 207 / 0.414 and 16 / 0.064 ratio 500 : 250 or 2 : 1 (1) empirical formula Pb ₂ O (1) allow 3 marks for 0.414 / 207 or 0.064 / 32 ratio 1 : 1 empirical formula PbO ₂ allow 2 marks for if 0.414 / 207 and 0.064 / 32 ratio 1 : 1 empirical formula PbO	(3)

Question Number	Answer	Acceptable answers	Mark
3(a)	Fe Cl 2.8/56 3.55/35.5 (1) 0.05 0.1 or 1 2 (1) FeCl ₂ (1)	Cl ₂ Fe FeCl ₂ with no working (3) Consequential errors: if "upside down" ie 56 / 2.8 and 35.5 / 3.55 ratio 20 : 10 or 2 : 1 (1) empirical formula Fe ₂ Cl (1) allow 3 marks for 2.8 / 56 and 3.55 / 71 ratio 0.05: 0.05 or 1 : 1 empirical formula FeCl ₂ allow 2 marks for 2.8 / 56 and 3.55 / 71 ratio 0.05: 0.05 or 1 : 1 empirical formula FeCl allow 2 marks for Fe Cl 2.8/56 3.55/35.5 (1) 0.5 0.1 (0) Fe ₅ Cl (1) - ECF	(3)

Question Number	Answer	Acceptable answers	Mark
3(b)	EITHER 2x23 (1) g Na makes 2x58.5 (1) g NaCl	23.4 g with no working (3) 23.4 g from any method (3) do not accept 23(.0)	
	9.2 g Na makes (<u>2x58.5)x9.2</u> g NaCl 46 (1) (= 23.4 g)	mol Na used = 9.2/23 (1) (= 0.4)	
	OR 23 g Na makes 58.5 (1) g NaCl	mol NaCl = 0.4 (1)	
	9.2 g Na makes (<u>58.5)x9.2(</u> 1) g NaCl 23(1)	mass NaCl = 0.4 x 58.5 (1) (= 23.4 g)	
		Ignore units throughout unless incorrect	
	mark consequentially eg	mark consequentially awarding 2 marks for 46.8 g,11.7 g and 16.3 g (see last example opposite).	
	46 (1) g Na makes (2x23+35.5) (0) g NaCl		
	9.2 g Na makes (<u>2x23+35.5)x9.2</u> (1) g NaCl 46		
	(= 16.3 g)		(3)

Question	Indicative Content	Mark
Number *3(c)	A description, comparison and explanation including some of the	
	following points	
	Order of reactivity: chlorine > bromine > iodine	
	Experiment	
	 add (aqueous) chlorine to a solution of potassium bromide the solution turns orange/yellow bromine is produced 	
	Conclusion/Explanation and equation:	
	(so) chlorine is more reactive than / displaces bromine	
	$Cl_2 + 2KBr \rightarrow Br_2 + 2KCl / Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^-$	
	Experiment	
	 add (aqueous) bromine to a solution of potassium 	
	 iodide the solution turns brown iodine is produced 	
	Conclusion/Explanation and equation:	
	(so) bromine is more reactive than / displaces iodine	
	$Br_2 + 2KI \to I_2 + 2KBr \ / \ Br_2 + 2I^{\scriptscriptstyle -} \to I_2 + 2Br^{\scriptscriptstyle -}$	
	Experiment	
	 add (aqueous) chlorine to a solution of potassium iodide the solution turns brown iodine is produced 	
	Conclusion/Explanation and equation:	
	(so) chlorine is more reactive than / displaces iodine	
	$Cl_2 + 2KI \rightarrow I_2 + 2KCI \ / \ Cl_2 + 2I^{\scriptscriptstyle -} \rightarrow I_2 + 2Cl^{\scriptscriptstyle -}$	
	 Allow use of organic solvents to identify halogens 	
	 Allow use of suggested reactions which do not produce a displacement reaction eg add (aqueous) bromine to a solution of a potassium chloride with suitable conclusion/explanation 	
	 Allow use of table of suggested experiments 	(6)

Level		No rewardable content
1	1 - 2	 a limited description of at least one experiment in which any halogen solution is added to any halide solution (not of the same halogen)
		OR describes order of reactivity as CI > Br > I
		 the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy
2	3 - 4	a simple description of at least two displacement experiments
		AND
		EITHER at least one correct explanation/conclusion
		OR
		 at least one correct observation of a displacement reaction that works/balanced equation.
		 the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	a detailed description of at least two displacement experiments
		AND
		(a total of) at least two correct explanations/conclusions
		AND
		 at least one correct observation of a displacement reaction that works/ balanced equation
		 the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors
		• spenning, punctuation and grammal are used with tew errors

Question Number	Answer	Acceptable answers	Mark
4(a)	 A description including: add (dilute) (hydrochloric) acid (1) 	correct formulae heat/thermally decompose	
	 gas/carbon dioxide (passed into/tested) with limewater (1) 	bubbled through limewater	
	 limewater goes milky / cloudy / white ppt (1) 	dependent on use of limewater	(3)

Question Number	Answer		Acceptable answers	Mark
4(b)	40 +[2 x 35.5]	(=111)	111 alone	(1)

Question Number	A	nswer	Acceptable answers	Mark
4(c)	•	100 (kg) (calcium carbonate) → 106 (kg) (sodium carbonate) (1)	OR alternative 106÷100 40000÷100 /40÷100 (moles approach)	
	•	<u>106x40</u> (1) (=42.4) 100	Only 42.4 with no working worth 2 marks 42400 g worth 2 marks	(2)

Question Number	Answer	Acceptable answers	Mark
4(d)(i)	 10.4/15.0 (1) (10.4/15.0) ×100 (1) (= 69.3)) 69.3 alone worth 2 marks If no/incomplete working shown answer to 2 or more sf scores 2 marks Ignore any units	(2)

Question Number	Answer	Acceptable answers	Mark
4(d)(ii)	Two suggestions from reaction incomplete (1) impure reactants (1) 	reversible	
	 other unwanted/side reaction(s) occur (1) 	ignore by-products form	
	 product lost during experiment/practical (1) 	could be an example eg some products left in apparatus	
		ignore generic experimental errors eg measuring/weighing errors/human error/spillage	(2)